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ABSTRACT
Common waterhemp (Amarathus rudis Sauer) is a frequent weed

in glyphosate-resistant (GR) crops in the midwestern USA due, in
part, to the delayed emergence of its seedlings. Variable waterhemp
emergence was simulated by transplanting seedlings into both corn
(Zea mays L.) and soybean [Glycine max (L.) Merr.] and bare plot
areas at differing crop growth stages during two growing seasons in
western Minnesota. Growth and fecundity were measured. As ex-
pected, late planted weeds produced little dry matter and few seeds,
and competition from corn or soybean reduced waterhemp dry weight
and fecundity by $ 90% compared with isolated plants. Interestingly,
common waterhemp was affected differently by crop and transplant-
ing date. Common waterhemp grown with corn was always shaded
by the crop canopy but produced seeds even when transplanted as
late as the V10 growth stage. In soybean, weeds transplanted before
the V4 growth stage were taller than soybean and produced more
seeds than those transplanted into corn at a comparable growth
stage; however, those transplanted after V5 produced no seeds.
Consequently, control of late-emerging common waterhemp plants
in soybean may not be needed, whereas control of late-emerging
plants in corn may be justified because of relatively high levels of
seed production.

MOST WEED MANAGEMENT APPROACHES deal only with
the existing weed problem and fail to address the

reasons for persistent weed infestations (Buhler et al.,
2000; Horak and Loughin, 2000). Increasing knowledge
of weed biology and ecology provides a better under-
standing of the interference mechanisms of undesirable
plants, expands crop loss prevention techniques, and
leads to better long-term management strategies. For
example, knowing the potential of seed production pro-
vides an opportunity for predicting the nature of forth-
coming weed populations (Swinton and King, 1994;
Wiles et al., 1996; Buhler et al., 1997). In addition, in-
formation on seed production of weeds that escape
control can add a new dimension to decisions of when to
control weeds and which weeds need to be controlled
(Berti et al., 1996; Nordby and Hartzler, 2004). Lastly,
understanding seed production, especially of late-
emerging species, may allow prediction of species that
have high probabilities of escaping control in systems
that rely only on postemergence herbicides.

Minimum tillage coupled with the use of GR culti-
vars changes weed diversity in fields because the weed
species (i) may either be tolerant or have developed
resistance to glyphosate; (ii) may be too large to be
controlled effectively by either chemical or mechanical
control techniques; or (iii) emerge after the season’s
final weed control method (chemical or mechanical) has
been completed (Scursoni et al., 2006, 2007). Common
waterhemp was not recognized as a problem in crop
fields before 1990 (Hager et al., 1997; Pratt and Clark,
2001). However, it was one of the first weeds recorded
to escape control in GR soybean crops throughout the
midwestern United States (Horak and Peterson, 1995;
Wax, 1995; Hinz and Owen, 1997; Buhler et al., 2001;
Hager et al., 2002; Hartzler, 2003).

Common waterhemp has been described as the per-
fect weed (Hartzler, 2003) because of season-long emer-
gence patterns (Forcella et al., 1997; Hartzler et al., 1999;
Buhler et al., 2001), a fast growth rate (Hartzler, 2003),
prolific seed production potential with .2 million seeds
produced per plant (Hartzler et al., 2004), and popula-
tions that can be resistant to many herbicides with
diverse modes of action (Wax, 1995; Anderson et al.,
1996; Hinz and Owen, 1997; Sprague et al., 1997a,
1997b; Foes et al., 1998; Patzoldt et al., 2002). In addi-
tion, common waterhemp plants often escape control
and survive under the crop canopy in GR crops either
because early emerged plants are often too large to be
controlled by a postemergence application (Norsworthy
et al., 2001) or plants emerge after the final postemer-
gence application of a nonresidual herbicide (Scursoni
et al., 2007). Uncontrolled weeds can produce viable
seeds that continue the infestation.

While the potential seed production of a plant popu-
lation may be very high, seed production of an in-
dividual can be influenced by factors such as time of
emergence, plant size, and the amount of interference
or competition exerted by surrounding plants (Murphy
et al., 1996; Knezevic and Horak, 1998; Clay et al.,
2005). In general, plant fecundity decreases when plants
emerge late in the growing season (Knezevic andHorak,
1998; Clay et al., 2005), although even a few viable seeds
can be enough to reinfest an area or further spread
an infestation. The crop species with which the weed is
competing also can influence plant growth and, ulti-
mately, seed production. For example, redroot pigweed
(Amaranthus retroflexus L.) plants that emerged after
the V2 stage of soybean growth (Ritchie et al., 1994) pro-
duced no seed, whereas plants that emerged in corn after
the V2 stage of corn growth (Ritchie et al., 1996) pro-
duced an average of 55 seed plant21 (Clay et al., 2005).
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Continued replenishment of the soil weed seed bank
is one of the reasons given for control decisions of late-
emerging weeds (Boerboom, 2002). The objective of
this study was to determine the seed production po-
tential of common waterhemp at four simulated emer-
gence dates when grown alone or with corn or soybean.
These data can be used to help guide decisions and
recommendations about the extent of control needed
for late-emerging plants based on their seed produc-
tion potential.

MATERIALS AND METHODS

The 2001 and 2002 field study was conducted at the Swan
Lake Research Farm of the USDA-ARS facility in Morris,
MN. The soil type was a Barnes loam (fine-silty, mixed, super-
active, frigid Calcic Hapludoll) with a pH of 7.3; sand, silt, and
clay content of 41, 33, and 25%, respectively; and organic
matter content of 60 g kg21. The plot area was moldboard
plowed in the fall and field cultivated in spring of the growing
season. The previous crop in the corn plot area in 2001 was
wheat (Triticum aestivum L.), whereas the previous crop in the
soybean plot area was corn. In 2002, the plots of corn and
soybean were interchanged.

Planting of GR corn (FCropland 212_) and GR soybean
(FPioneer 90B72_) occurred on 29 May in both 2001 and 2002.
Individual plots were four rows wide with a 76-cm row spacing
and 4 m long. Seeding rates were 79,000 corn seed ha21 and
445,000 soybean seed ha21. At planting, corn was fertilized
with 150–35–35 kg ha21 of N–P–K and soybean was fertilized
with 7–35–35 kg ha21 of N–P–K. Both crops emerged on 6 June
in 2001 and on 5 June in 2002.

Common waterhemp seed for the 2001 study were collected
from plants in agricultural fields near Morris, MN, in the fall of
2000, and seed for the 2002 study were collected from plants at
the Swan Lake Research Farm in the fall of 2001. Seed were
stored at 4jC from the time of harvest until use the following
spring. Seeds were placed in a circulating water bath at 35jC
for 48 h to stimulate germination just before planting in peat
pots. The pots were placed in a greenhouse and watered to
keep near field-capacity. Common waterhemp plants that were
at the first-true-leaf growth stage were transplanted into field
plots at four crop growth stages each year (Table 1). To have
the common waterhemp plants at this growth stage, seeds were
planted in the greenhouse several times during the season,
about 8 d before each transplanting date. When the crop was at
the desired growth stage, 64 peat pots that each contained one
common waterhemp plant were transplanted into the center
two interrow areas of each crop at equidistant spacing for a
density of 5.2 waterhemp plants m22. In addition, common
waterhemp was transplanted into bare plot areas that had been
fertilized similarly to corn (high fertility) or soybean (low fer-

tility) in the same pattern at each time to determine maximum
growth and seed production potential. Treatments (i.e., timing
of common waterhemp transplanting) were replicated four
times in a randomized complete block design.

To keep plots free of extraneous weeds, glyphosate [isopro-
pylamine salt (50.2% a.i.)] was applied to plots not containing
transplants using a backpack sprayer at a rate of 1.15 kg a.i.
ha21 4 d before each transplanting date. Weeds that emerged
after transplanting were removed by hand, whenever neces-
sary, throughout the rest of the growing season.

During the season, the height of four common waterhemp
plants per plot was measured from the soil surface to the tip
of the tallest plant part. In addition at these sampling times,
canopy diameters from the same plants were estimated using
the main stem as the center point and measuring the widest
plant span. After flowering, seedheads of four randomly se-
lected common waterhemp plants for each replication were
enclosed in nylon mesh bags that allowed air movement and
penetration of sunlight but avoided seed loss. After the first
frost, bagged plants were harvested by clipping them at ground
level. Plants were divided into vegetative and reproductive
structures. Vegetative structures were separated into main
stem, branch, and leaf components, dried at 72jC for at least
1 wk, and weighed. Reproductive structures were air-dried in
the greenhouse. Seeds were separated mechanically from
bracts, cleaned, and weighed. One hundred seeds per plant for
each treatment and replication were counted and weighed.
These measurements were used to estimate the total number
of seeds produced per plant by treatment from the total seed
weight per plant.

Air temperatures were collected on site at a 2-m height.
Growing degree days (GDD), used to calculate cumulative
thermal time to compare biomass and seed production of the
plants at different transplanting times, were calculated as

GDD 5 S[(Tmax 2 Tmin)/2]

where Tmax is the maximum temperature, and Tmin is the mini-
mum temperature for each day from crop planting through
the first fall frost. Temperatures, 10jCwere set at 10jC (base
temperature), and temperatures above 30jC were set at 30jC
(ceiling temperature).

Data were not pooled across years because common water-
hemp was transplanted at slightly different growth stages of
the crop each year. Data were not distributed normally and did
not have constant variance; therefore, data were log10 trans-
formed before ANOVA (SAS Institute, 1997). Mean compari-
sonsweremade usingDuncan’sMultipleRangeTest (P5 0.05)
(SAS Institute, 1997). Equations were developed for each crop
to describe the relationship between cumulative GDD expo-
sure for each transplant treatment before first fall frost and
dry matter production or seed production. Although common
waterhemp transplanting dates differed between years, a single
curve described the 2 yr of data for each parameter by crop.

Table 1. Common waterhemp transplanting date, crop phenological stage and height, and total number of growing degree days (GDD) to
which common waterhemp plants from each transplant group were exposed to by the end of the growing season at Morris, MN, in 2001
and 2002. The GDD base and ceiling temperatures were 10 and 30�C, respectively.

2001 2002

Transplanting
date

Corn
phenological

stage
Corn
height

Soybean
phenological

stage
Soybean
height

Total
GDD

Transplanting
date

Corn
phenological

stage
Corn
height

Soybean
phenological

stage
Soybean
height

Total
GDD

cm cm cm cm
June 6 VE 1 VE 1 2120 June 12 V1 5 V1 5 2100
June 20 V2 10 V3 10 1878 June 26 V4 25 V4 17 1824
July 5 V5 27 V5 27 1596 July 10 V8 120 V6 40 1740
July 18 V9 150 V8 50 1270 July 26 V10 200 V11 83 1169
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RESULTS AND DISCUSSION
Total GDD for 2001 and 2002 growing seasons (from

crop planting to first frost) averaged about 2100. Crops
had similar growth patterns in both years. Common
waterhemp plants transplanted at crop emergence (VE)
were exposed to this maximum GDD, whereas those
transplanted last (V9 corn/V8 soybean) were exposed to
only about 1200 GDD, or 40 to 44% less than maximum
cumulative heat units (Table 1).

Common Waterhemp Growth and Vegetative Dry
Matter Production

The earliest transplanted common waterhemp plants
were generally the tallest, had the greatest canopy di-
ameter, and had the greatest vegetative dry weight at the
end of the season when compared with later transplants
(Table 2). Branch biomass was reduced to a greater ex-
tent than main stem and leaf biomass when vegetative
biomass of early and late transplants was compared
within any treatment (data published in Uscanga-
Mortera, 2004).
Common waterhemp plants grown alone but at the

same fertility level as the crop were taller, had greater
canopy diameters, and had dry weights that were up to
10 times greater than plants grown in competition with
either crop (Table 2). In high-fertility plots (i.e., corn),
late transplanted common waterhemp produced 19 to
21% of the biomass of the early transplants. In the low-
fertility plots, late transplanted common waterhemp
produced 9 to 11% of the biomass of early transplants.
Common waterhemp transplanted into corn always

was below the corn canopy. For each year at the end of
the season, average maximum corn height was 250 cm
whereas common waterhemp height ranged from
235 cm (VE) to about 20 cm (V9, 2001 and V10, 2002)
(Table 2). Maximum soybean height was about 90 cm
each year and common waterhemp was taller than soy-

bean when transplanted at VE and V3 (2001) and V1
(2002), but shorter than soybean when transplanted at
later soybean growth stages (Table 2).

Common waterhemp transplanted into soybean at
VE (2001) had about 2.2 times greater vegetative bio-
mass and at V1 (2002) had nine times greater vegetative
biomass than when transplanted in corn at the same
growth stages in the same years (Table 2). When trans-
planted into either crop at V5 or later in 2001, or V4 or
later in 2002, the amount of vegetative biomass pro-
duced was very low (,2 g plant21). While common
waterhemp survived very late transplanting (V82V11)
in corn, all transplants in soybean died when planted at
or after V8.

Dry weights of common waterhemp transplanted into
corn at VE were greater than dry weights reported from
common waterhemp that emerged early in corn under
Iowa conditions. Nordby and Hartzler (2004) reported
that common waterhemp that emerged with corn pro-
duced about 28 g of biomass plant21, whereas in this
study, biomass of the early transplants averaged 85 g
plant21. The difference between this study and the Iowa
study may be due to the transplants having an advantage
over those that emerged with the crop; that is, at emer-
gence in this study, transplants were at the first-true-leaf
stage rather than the cotyledon stage of true seedlings.
Biomass of common waterhemp that was either trans-
planted into V8 corn in Minnesota or emerged at the V8
corn growth stage in Iowa (Nordby and Hartzler, 2004)
had similar low weights (,1 g plant21). Common water-
hemp biomass from plants grown in soybean in this study
had similar biomass as plants grown in Iowa soybean
(Hartzler et al., 2001, 2004).

Common Waterhemp Seed Production
Common waterhemp seed production from plants

grown alone ranged from 33,500 to over 1 million seeds

Table 2. Common waterhemp height, canopy diameter, vegetative dry weight, and seed production per plant at physiological maturity in
2001 and 2002 at Morris, MN, when grown with corn, soybean, and alone at similar fertility levels as the respective crop.

2001 2002

Crop Crop phenology Height Canopy diam. Dry wt. Seed no. Crop phenology Height Canopy diam. Dry wt. Seed no.

cm g plant21 no. plant21 cm g plant21 no. plant21

Corn VE 235a† 41a 85.0a 43,000a V1 115a 27a 17.8a 21,200a
V2 103b 28b 6.0b 3,200b V4 51b 16b 3.4b 2,950b
V5 35c 12c 1.3c 1,500c V8 33bc 11c 0.2c 200c
V9 24c 10c 0.2d 150d V10 20c 6c 0.5c 100c

No corn VE 264a 165a 765a 476,000a V1 162b 68b 627a 593,000a
V2 204b 97b 263b 198,900b V4 187a 90a 716a 669,300a
V5 213b 159a 532a 244,400b V8 102c 53b –‡ –
V9 161c 92b 166b 76,900c V10 100c 55b 121b 94,400b

Soybean VE 212a 81a 187a 180,700a V1 160a 41a 163a 128,000a
V3 154b 43b 54.7b 22,700b V4 70b 19b 2.14b 1,200b
V5 38c 13c 1.1c 30c V6 9c 4c 0.05c 6c
V8 0d 0d 0d 0c V11 0d 0d 0c 0c

No soybean VE 200a 105a 626a 547,800a V1 172a 75b 920a 832,000a
V3 177b 105a 374ab 334,500ab V4 166a 117a 966a 1,053,000a
V5 166b 106a 243b 180,300b V6 114b 91ab 348b 264,900b
V8 112c 76b 66c 33,500c V11 88b 72b 86c 67,700c

†Numbers followed by the same letter within a crop and year indicate no differences between treatments at P # 0.05.
‡Missing values.
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plant21 depending on transplanting date and soil fertility
conditions (Table 2). Compared with common water-
hemp grown alone, corn competition reduced seed
production by 90% or more, whereas soybean compe-
tition had less effect at VE (about 33% seed reduction)
and more effect (no seeds produced) when transplanted
at V8 or V11.
The seed production in corn reported here is higher

than numbers reported in an Illinois study (Steckel and
Sprague, 2004b) but similar to numbers reported in an
Iowa study (Nordby and Hartzler, 2004). For example,
common waterhemp transplanted in corn at VE in this
study averaged 43,000 seeds plant21, whereas seed num-
bers from common waterhemp plants transplanted into
corn at VE in Illinois averaged 16,000 seeds plant21

(Steckel and Sprague, 2004b). The differences in seed
production potential between the studies may have been
due to the high planting densities in Illinois (490 plants
m22) versus low densities in Minnesota (5 plants m22),
corn growth, or environmental differences.
Common waterhemp in Iowa (Nordby and Hartzler,

2004) at 3 plants m22 that emerged in corn at either the
VE or V5 stage produced 48,400 and 1,300 seeds plant21,
respectively, similar to seed numbers in Minnesota.
However, in contrast with the Iowa data that reported
no seed production when the weed emerged at the V8
corn stage, plants in this study survived and produced
100 to 150 seeds plant21 even when transplanted at the
V9 to V10 corn growth stages. These data indicate that
even very late-emerging common waterhemp plants pos-
sibly can survive in corn and produce seeds to maintain
or increase infestations. About 1 to 5% of the common
waterhemp seeds from the soil seedbank germinate an-
nually (Leon and Owen, 2004). Thus, fecundity rates as
low as 100 to 150 seeds plant21 conceivably could main-
tain viable replacement populations of waterhemp.
Common waterhemp plants that were transplanted

into soybean from VE to V3 had a greater seed pro-
duction potential than comparable plants grown in corn
(Table 2), with values ranging from 180,700 (VE, 2001)
to 128,000 (V1, 2002) seeds plant21. These seed produc-
tion potentials are similar to the 200,000 seeds plant21

reported for waterhemp emerging early in soybean in
Illinois (Steckel and Sprague, 2004a). Seed production of
waterhemp in soybean was reduced to 30, 6, and 0 seeds
plant21 when transplanted at V5 (2001), V6 (2002), and
V8 or later soybean stages in both years, respectively
(Table 2). These seed numbers are considerably lower
than those reported in Iowa, where common waterhemp
plants produced 64,000, 17,000, and 3,000 seeds plant21

when they emerged at theV2,V4, andV6 soybean stages,
respectively (Hartzler et al., 2004).
Equations that fit total common waterhemp dry

weight and seed production (Fig. 1 and 2) to GDD
based on time of transplanting indicated that the two
crops had different effects on common waterhemp. Total
dry weight and seed production of plants transplanted
into corn fitted exponential decay curves when plotted
against cumulative GDD exposure after transplanting
(Fig. 1). In contrast, equations that fit GDD vs. total dry
weight or seed production of plants transplanted into

soybean were sigmoidal curves (Fig. 2). These data indi-
cate that corn competition had a larger effect on com-
mon waterhemp than that of soybean during the first
stages of crop growth. Soybean was a weak competi-
tor during these initial stages, allowing common water-
hemp to grow taller than the crop (Table 2). Light
intensity differences between crop canopies most likely
influenced common waterhemp growth and seed pro-
duction patterns. For example, in prior studies at the
Morris location, maximum corn leaf area index (LAI)
of 3.75 was attained at about 450 GDD after planting
(Westgate et al., 1997), whereas soybean did not reach
3.75 LAI until about 550 GDD (»1 wk later) (Reicosky
et al., 1985). Moreover, final maximum soybean LAI of
about 7 was 86% greater than corn LAI and attained at
about 700 GDD after planting (about 2 wk after corn
maximum LAI) (Reicosky et al., 1985). These canopy
closure and maximum LAI differences between crops
would result in light intensity penetration differences in
the crop canopy. Seed production in common water-
hemp has been reported to be associated closely and
negatively with shading (Steckel et al., 2003). Linear

Growing degree days after crop emergence
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Fig. 1. Effect of delayed transplantation on (a) total dry weight and (b)
seed number produced by common waterhemp plants transplanted
into corn at growth stages VE, V2, V5, and V9 (2001) and V1, V4,
V8, and V10 (2002). The equation for each of the lines for (a) total
dry weight and (b) seed number is: Log10 Y 5 a (2bx). Coefficients
for total dry weight are a5 2.0 (0.05) and b5 0.005 (0.0003) (R2

5
0.97), and for seed number are a 5 4.7 (0.09) and b 5 0.0016
(0.0001) (R2

5 0.94). Numbers in parentheses are standard errors
of the parameter values.
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regressions of shading percentage and waterhemp seed
production for seedlings transplanted into corn in
Illinois (Table 1 in Steckel et al., 2003) indicated that
100% shading was required to eliminate seed produc-
tion of early (May 23) transplanted seedlings, but only
90% shading was needed to inhibit seed production of
late (June 23) transplanted seedlings. By analogy, late-
emerging waterhemp seedlings would be expected to
be more sensitive to shading than early-emerging plants.
Differential sensitivity to shading and early- and late-
emerging plants may help explain differences in seed
production among crops and locations.
In addition, although dry matter was not divided by

strata in this study, we observed that most dry matter
primarily was in the upper parts of the common water-
hemp plant and above the soybean canopy when trans-
planted at the VE, V1, and V3 soybean growth stages.
The vertical distribution of dry weight of redroot pig-
weed, a closely related species, within the crop canopy
has been reported to be altered by differences in crop
competition (McLachlan et al., 1993; Knezevic et al.,
1994; Hartzler et al., 2004). The stratification of common

waterhemp in soybean allowed the top of the plant to
grow without light competition and also without ob-
structions for pollen movement in these dioecious plants.
Ready access to light and pollen may explain why com-
mon waterhemp plants that grew above the soybean
canopyproduced greater amounts of seed comparedwith
common waterhemp plants grown within either the corn
or soybean canopy.

CONCLUSIONS
The results from this research indicated that common

waterhemp could survive late transplanting (simulated
late emergence) into crop canopies and have the poten-
tial to produce seeds. Corn and soybean affected com-
mon waterhemp growth and seed production differently.
Soybean was a weak competitor up to the V4 stage of
soybean growth, and control of common waterhemp
emerging before this growth stage would be critical to
prevent future infestations. However, transplants into
soybean after the V5 stage of soybean produced few
seeds, and those transplanted after V6 did not survive.
These data indicated that control of very late-emerging
seedlings may not be necessary because of the compe-
tition exerted by soybean. In contrast, late-emerging
common waterhemp plants growing in corn produced
many more seeds. An effective control method for these
late but fecund plants would be recommended. Such
control could be accomplished easily by supplementing
(glyphosate-based) postemergence weed management
with any of a wide range of soil-applied herbicides com-
monly used in corn.
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